“AD-R189 657

ADA_(TRADEMARK) COHPILER VﬂLIDﬂTION SUMNARY REPORT
TOLERANT SYSTENS TOLER. . C(U> INFORMATION SVSTEHS AND
TECHNOLOGY CENTER W-P AFB DH ADA VALI.. 16 APR 87

|) | | i . o PR Sttt h 3 v N « B IR IS I RN T . a8 el cat, gt : + . 0 .
) ""?‘."“’“"""“"“-""r‘.’n'. R AR T U O | 1 (NN R RN R AT KR AT I Y .--A.l-'-'-‘*»‘-'l,‘ ,:,G'

v"":".! 9

‘ z".."!.' X

‘ Ay
[]

)

l

)

R !

3

4

4 | | "’ |

‘ i he Bl
== wups M2z

3 l'l i

.

—

' Bz e g

4
?:'.F_‘{\

-

AT
P

4

4 & N &

AR
A S v 8

[KA
Bt Ay &

z.

,"l{'i °
% N
LA

A G
4§ 5

;.'
A
Al
45 Y
IQ

P

7o
2
L}

L4 - - - A 4 - - .
> WY W T e R W T L 32 2 0 00 e A e 4 Cw W swrwrw -~y . - o
J\.J':“xﬁ.’-.ﬁa.’-.’-"\ e "\F-«.’R\N\' NN AGNIC Al N R NN S R S AR O W
-N'_J'f,.r e ? T P S PV PR A N PN v NG A" W) /
e 0N ')-”"'5" N e A e N " BTN
> "'*".‘-'- RO SRSB LR LA ANBANTANRLS .
¥ - " -
AN Ay NN LR AN

TRe i

a " a0 4

SEFURITY CLASSIFICATION QF THIS PAGE (When Data Enterel)
r—q

UNCLASSIFIED

REPORT DOCUMENTATION PAGE

U R URTURCT R W™ Wy

AE LITEING FORM

(%)

X

1. REPORT NUMBER

|2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) . .
Ada Compiler Validation Summary Report:

Tolerant Systems. Tolerant Ada Development System.
({part number S$S-240), Ver.2.0. Tolerant Eternity

16 Apr 1987 to 16 Apr 1988

5. TYPE QOF REPQORY 3 RERIOD COVERED

6. PERFORMING ORG. REPQRT NUMBER

7. AUTHQR(
Wri g?ni)Patterson AFB

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND ADDRESS

Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB OH 45433-6503

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

| §

11. CONTROLLING QFFICE NAME AND ADDRESS

12. REPORT DATE

AD-A189 657

Ada ngnt Program Office ¢ ¢ 16 Apr 1887

United States Department of Defense

Washington, DC 20301-3081 3 TOVBER 7 PRGEY

14. MONITORING AGENCY NAME & ADDRESS(/fdifferent from Controiling Office) 15. SECURITY CLASS (ofthisreport)
Wright-Patterson UNCLASSIFIED

‘153. 855&655&FICATION/OOHNGRADING

16. CISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)

UNCLASSIFIED

«

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached

4 ‘A" ’~ .h’ "r'-' N‘\' rv‘ () \v‘%&"f\w'c{\f

DD rukm 1473 epITION OF 1 NOV 65 IS OBSOLETE

1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
i) -~ ~ e
Me i By ww €

o

IR e

W)

~
)

e_»
£

HS
X

P e

g
AR

]
f‘}

Vo

>

l':r ay

nY
{"1'1:,
-

h e P d 4
Pt S L g’

l,

AR IOy

¥

€&
A by

A ke

v {"fsf

"o
&

LR
l’ l'

[Ny S

A

T3
£

%

0N e R AT
b Ay
S XRANAL

h]
o e 1 0 !

vy . -
v

.
.

l-rl b

AN TY
-

ey

AN

PP P

(2

"% .] o P T I) W% P g P I e Y '-'-‘\\\'\.'ﬁ\'-"-.'-\'-'\.'~.\.\\-\'-‘-'\,\ S
Lmihfvfh." {4 f!’ﬁh"AfJM!* N N L A R A G

2

EXECUTIVE SUMMARY

~

This Validation Summary Report (VSR) summarizes the results and conclusions
of valiidation testing performed on the Tolerant Ada Development System
(part number S-240), Version 2.0, using Version 1.8 of the Ada® Compiler
Validation Capabiliity (ACVC). The Tolerant Ada Development System 1s
hosted on a Tolerant Eternity operating under TX, Release 5.2. Programs

processed by this compiler may be executed on a Tolerant Eternity operating

under 'I‘X, Release 5.2. . Ca L ey ALy, Lor ettt

On-site testing was performed 12 APR 87 through 16 APR 87 at San Jose CA,
under the direction of the Ada Valldation Facility (AVF), according to Ada
Validation Organization (AVO) policies and procedures. The AVF identifled
2210 of the 2399 tests in ACVC Version 1.8 to be processed during on-site
testing of the compiler. The 19 tests withdrawn at the time of validation
testing, as well as the 170 executable tests that make use of
floating-point precision exceeding that supported by the implementation,
were not processed. After the 2210 tests were processed, results for Class
A, C, D, and E tests were examined for correct execution, Compilation
listings for Class B tests were analyzed for correct diagnosis of syntax
and semantic errors., Compilation and link results of Class L tests were
analyzed for correct detection of errors. There were 8 of the processed
tests determined to be inapplicabie. The remaining 2202 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 _ 3 4 5 6 7 8 9 10 11 12 14

Passed 102 252 334 244 161 97 138 261 130 32 218 233 2202

Falled ¢ ¢ ¢ 0 0 ©0 O O O©0 0 0 0. 0

4

Inapplicable 14 73 86 3 0 O 1 1 O O O O 178
Withdrawn 0 5 5 0 0] 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANST/MIL-STD-1815A Ada.

®Ada 1s a registered trademark of the United States Government
(Ada Joint Program Office).

A% Yal tad o Fal Saf ol "ol

.\-l L[]

Y%

-

s '.f‘:"' n
. 1"
LA

7’

Ly
. LIgE 3
Py
.'l
P A

b's s

'(

¥ v,

’g -
YTl

AN 58N

R A A

%y "z

TIE LA

R

"y "e 0 Ty
.

N Tt A
‘\{5'.“'} A

e
¢

- ,;:

)
AN SN

i

’)
%

’
b
LS

AVF Control Number: AVF-VSR-69.0687
87-01-15-TCL

A A N
R

<

25

Ada® COMPILER ,-»,
VALIDATION SUMMARY REPORT: F:J
Tolerant Systems Pty
Tolerant Ada Development System N
(part number S-240), Version 2.0]

]

Tolerant Eternity

;
el

s X s
i .‘¢
N

& %P

» e
- .
S

D ‘C.
Completion of On-Site Testing: o Sl J :ﬁ}‘
16 APR 87 vi;;";“:M“.“:,“mu_,__*ﬁx

)

[
=

S

P e e e — e e ——————

Prepared By: ' B e RN

Ada Validation Facility S T ¢
ASD/SCOL Dt LT °

Wright-Patterson AFB OH U45433-6503

$eo

Eﬁ-/z

————— - mes e v o -

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington, D.C.

®pda is a registered trademark of the United States Government
(Ada Joint Program Office).

L

ol Celes
5 AR A R S R S

CORS ANy

‘Y)\‘.\{\‘f‘u’ ‘D.F\‘n.'.\' .. '.\"\..\‘.\..\‘.'-;\}\':’\:’-‘;.'\:..'- \:..':'\.._-,..'. o

G a0 o 49 g 0 g ¥ g 4'g 0% 0 20 A0 o g b gt

a2 T R AT

+ +
+ Place NTIS form here +
+ +

LR R L 2 T RGPS R SRR

- 'Iv‘f-‘f‘f‘i_‘n’
o, Py A

A e At
a‘;hf\J=:\f%.\f\ o

o\

ST g B
5 & % :
P AL

.
.

Eﬁ;a

.
PR

P S
A e,
B AP

H"
e

-d
a,

oo

S

. 8 0 -,
AN
;‘ﬂ' 'l' "v '-fﬂ;l g

P
Ve

PR S

: ’
:# Ada” Compiler Validation Summary Report: .
B t
XA Compiier Name: Tolerant Ada Development System .
! (part number S-240), Version 2.0
2 ,
;:E Host: Target:)
;g: Tolerant Fternity under Tolerant Eternity under
TX TX

y Release 5.2 Release 5.2
) "
N Testing Completed 16 APR 87 Using ACVC 1.8 X
. :
‘ 3

This report has been reviewed and is approved.
.'.I' »

~; Széé{1249Q7§Ll<a—u—a_¢«/ éf)/ééékquﬁfv—zli) ;

Ada Validation Facility

Georgeanne Chitwood

ASD/SCOL

Wrignt-Patterson AFB OH 45433-6503

Wl il

fda Validation Organization

y & -

S . AR :';";';";‘J

,f; Dr. John F. Kramer

5 Institute for Defense Analyses .

' Alexandriz VA '
{

) ,-\ X

& -

2 Z?i%zizizz‘ Z:fﬁgéz D) :
Ada J€int Program Office

irginia L. Castor]

Xy irector :
~ Department cf Defense .
Q: wasnington DC X

\

A
N
- .
b »

£ .

> .
e, .

-
~ !
e,

- ®ada i3 a registered trademark of the United States Government ’
o (Ada Joint Program Office). R
'-:,

N
BN b
Fr
e
f,'

"\ AN e y R A R A ,\ -\.'\'\'\' :_‘.:."'_.:.'."\."-.'f S

R R R T S N N R ey T . . 2tk a¥8 avh a'h 2% ath ath ats 2% 3 2%h o' a's 2'f &8 o4 2’8 a'4 a'h &b Tvow

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions ';
of validation testing performed on the Tolerant Ada Deve;opmer‘ System b
(part number S-240), Version 2.0, using Version 1.8 of the Ada® Compiler
Validation Capability (ACVC). The Tolerant Ada Development System Is

hosted on a Tolerant Eternity operating under TX, Release 5.2. Programs e
processed by this compiler may be executed on a Tolerant Eternity operating N
under TX, Release 5.2. o
.
L
On-site testing was performed 12 APR 87 through 16 APR 87 at San Jose CA,
under the direction of the Ada Validation Facility (AVF), according to Ada -
Vaiidation Organization (AV0O) policies and procedures. The AVF identiflied R
2210 of the 2399 tests in ACVC Version 1.8 to be processed during on-site o
testing of the compiler, The 19 tests withdrawn at the time of wvalidation =
testing, as well as the 170 executable tests that make use of ~
floating-point precision exceeding that supported by the implementation, -
N were not processed. After the 2210 tests were processed, results for Class W
) - L
L A, C, D, and E tests were examined for correct execution. Compilation o
™ listings for Class B tests were analyzed for correct dlagnosis of syntax -
™ and semantic errors. Compilation and link results of Class L tests were "
\ analyzed for correct detection of errors. There were 8 of the processed ;:
' tests determined to be inapplicabie. The remaining 2202 tests were passed. '
.
! ‘
! The resuits of validation are summarized in the following table o
? RESULT CHAPTER TOTAL N
! 2 3 4 5 6 7 8 9 10 11 12 4 ‘
! Passed 102 252 33L 2L4 161 97 138 261 130 32 278 233 2202 g
X Failed 0o 0 0 0 0o 0 0 O 0 O O O 0 «9.'
N
Irapplicable 14 73 8 3 0 o0 1 % O 0 O O 178
s ithdrawn 0 5 5 0 0 1 1 g 4 0 1 0 19 A
. TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399 N
\ \
)]
’ The AVF concludes that these results demonstrate acceptable conformity ¢to b
ANSI/MIL-STD-18154 Ada.
, N
k- ®Ada 1s a registered trademark of the United States Government =
7 (hda Joint Program Office). -
» ff
; 1 ;}‘
o
) J\

M P o "l S R P TR R T AT AT AT R T AT e T Py - - .
X f» oy, \1\.\ :~f$¢ 5N J\I.J_f ,. {~I\f_f\ e ‘%f"\fx'xru'\ IR r‘.\-\:\:\._.\a‘:\f .\;;a {\.;}?J.f T f: A

o
> X)
-
o
*\
Tl
o

PN

Wy

L4

LALLM

-
-

i\ 's -‘ “ I\J'.J

)

T A A A e e A U A LA AT S e A A,
L Em '.u'.r'.r".-r"},‘.-.r, BRI .- NN

PR RN TN P R A A T I A EN O AN A N AN I N EN AN AR EN LA R W AR RS AN R I A »,
TABLE OF CONTENTS

CHAPTER i INTRODUCTION
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT
1.2 USE OF THIS VALIDATION SUMMARY REPORT . . .
1.3 REFERENCES ¢ ¢« & ¢ & ¢ ¢ o o o o s o o o o «
1.4 DEFINITION OF TERMS & & & ¢ ¢ o o o o o o &
1.5 ACVC TEST CLASSES ¢ ¢ ¢« ¢ o o o o o o o o @

CHAPTER 2 CONFIGURATION INFORMATION
2.1 CONFIGURATION TESTED v« &+ & ¢ o ¢ ¢ ¢ o » o &
2.2 IMPLEMENTATION CHARACTERISTICS v ¢ ¢ ¢ o o «

CHAPTER 3 TEST INFORMATION
3.1 TEST RESULTS v ¢ ¢ ¢ o v ¢ o o o o o o o o &
3.2 SUMMARY OF TEST RESULTS BY CILASS . + « &« o &
3.3 SUMMARY OF TEST RESULTS BY CHAPTER
3.4 WITHDRAWN TESTS . & ¢ o o ¢ o o o « o o o =
3.5 INAPPLICABLE TESTS &« ¢« ¢ ¢ ¢ o ¢ o o o o o &
3.6 SPLIT TESTS 4« ¢ o o o o o« o o o o o o o s o
3.7 ADDITIONAL TESTING INFORMATION . . o o &« o &
3.7.1 Prevalidation . ¢ ¢ & ¢ ¢ ¢ o ¢ o ¢ o o &
3.7.2 Test. Method . ¢ ¢ & v ¢ ¢ ¢ ¢ ¢ ¢« o & o @
3.7.3 Test Site + ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o &

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

VRNV O Wy LS N YRy

o, '

sab val.val.tats"abot

.
.
.

e IR RS S)
1

Eww oo

.
.
.
W wwwwww ww
4‘:2:3-’-!:8»'\)1\):\)-*..:

v \.’r:,.\:_\;r\:,

AN . A B ¥ \, . . e

-
-

T NI SR NN

A AR A R R AL A LA T Y Y WU PO POWVRE S AN OO R N OO ALY PR O WS A LA AR O O Sad @0 0 8t 00 06,00, 0°0.0"0, 00,04, 00,24 .2'0.2"0.2"} o' o'

o
’

%

o

»

e
poay
it

~
[]
e
(32
CHAPTER 1 KRt
INTRODUCTION N
)
)
Doy

®

This Validation Summary Report (VSR) describes the extent to which a N
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A. O
This report explains all technical terms wused within ¢ and thoroughly {ﬁ{
reports the results of testing this compller using the Ada Compiler :,:.
Validation Capability (ACVC). An Ada compiler must be impiemented \;u\
according to the Ada Standard, and any implementation-dependent features ;'"
must confeorm to the requirements of the Ada Standard. The Ada Standard 3@#
must be implemented in its entirety, and nothing can be Implemented that is Lﬁ;‘
not in the Standard. ROt
ST

LS

Even though all vaiidated Ada compilers conform to the Ada tandard, It
aust be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of i1dentifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All

S5se

‘o
of the dependencles observed during the process of testing this compiler n
are given in this report. P
N
Tne Iinformation in “his report is derived from the test results produced {ﬁf
during validation testing. The validatlon process includes submitting a K :f
suite of standardized tests, the ACVC, as inputs to an Ada compiler and S&E:
evaljuating the results. The purpose of validating is to ensure conformity H& o
of the compiler to the Ada Standard by testing that the compiler properly P
implements 1legal 1language constructs and that it identifies and rejects ST
Zllegal larnguage constructs. The testing also identiflies behavior that is :J\
izpliementation dependent but permitted by the Ada Standard. ix classes of \j\
tests are used. These tests are designed to perform checks at compile :ﬂ:
time, at link time, and during execution. Q})
H b 3
o _
Ka?
s
A) -
\':‘:'
o
SANS
W
[]) i
“w

it Ty |
" L}

)
AN

1-1

KNO 5

7 oas
Sy Ay
Pllel s

A A AT A SR NS AT AR 08 1t S AR T S A AR B AN RN 26 S A SR S

G Nip gty 8°n 8% 4" . . AP PN LW U 1 st s, et voat. al tahta 8% 2% 2Vaat. At ata At at, "at.al. " v, gy XTI R at Mg el Tak el *

INTRODUCTION

1.1 PURPOSE OF THIS VALTDATION SUMMARY REPORT

This VSR documents the resuits of the validaticn testing performed on an
Ada compiier., Testing was carried out for the foliowing purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any unsupported language constructs
required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the

irection of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
12 APR 87 through 16 APR 87 at San Jose CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of tris report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The resuits of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and compiete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Coples of this report are
available t¢ the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

bda Validation Facility
ASD/ScCOL
Wright-Patterson AFB OH U45433-6503

1-2

AP S

. ™ Te e
-\(‘.'v"__-l‘__-l‘,

Ty -, -
LR} "
- -

‘i.,\‘?.\:{;{.‘\-(.

A LN N B SR

Ay
AL

N A N Y

A

»
Y

elele
i e] _'I"i

v wx T b
2

x

oL

4

g

@y S AN
ST N

s A
‘fi [

7,
o

L

f

P
& 2o

o5
7

&

» :l‘:"‘ . ;:“
[~

[
-

R AU A O D A U U AV U U OV U UV LAY U DA LN U ANAS AT UM TR AU O USRS U UM U U UAS LY U UL U b "t 1. o9 U 1 \J { U

-h.

INTRZZDUCTION

M >0

- h,

-

Questions regarding this report or the validation test results should be ﬁ§
directed to the AVF listed above or to: ot
o

‘

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street

T

2ol

r'-
Alexandria VA 22311 ;y:
v
e
o
1.3 REFERENCES s’
o4
o
1. Reference Manual for the Ada Programming Language, F:;
ANSI/MIL-STD-1815A, February 1983. b
2. Ada Validation Organization: Procedures and Guidelines, Ada Joint :j
Program Office, 1 January 1987. t“
\.-"
>,
3. Ada Compiler Validation Capability Implementers' Guide, SofTech, vl
Inc., December 1984. .'
"
o
28
.h"
1.4 DEFINITION OF TERMS i:.
ACVC The Ada Compiler Validation Capability. A set of programs Em
that evaluates the conformity of a compiler to the Ada ::y
language specification, ANSI/MIL-STD-1815A. g
U*{
»
Ada Standard ANSI/MIL-STD-1815A, February 1983. fk
N
Applicant The agency requestiiag validation. ;f‘
L
‘ ‘_\
AVF The Ada Validation Facility. In the context of this report, k:
the AVF is responsible for conducting compiler validations Q\‘
according to established policies and procedures. ;
AVO The Ada Validation Organization. In the context of this Sf.
report, the AVO is responsible for setting procedures for .:ﬁ
compiler validations. i
|"'
Compiler A processor for the Ada language. In the context of this ?‘
report, a compiler is any language processor, including 7}5
cross-compilers, translators, and interpreters. e
N
Failed test A test for which the compiler generates a result that !;
demonstrates nonconformity to the Ada Standard. o)
]
Host The computer on which the compiler resides. N,
j\
v-_\-
S
1= A
3 2
"\
)
AN
I
-
A m e " a AT BT AT E " » " e e T mTaTatgT WL, W - w - % e e " m " a®"a” LR R SR ST S D L L P (\'

T WAt e a2t et vat e 2N ¥a ¥ g4 2t %8 2°8. 2 020 0. 0.8 420 .0 $ad V2l tatalaVe et P a2 0 $te 42 4 4K : ‘2 d\e A dts ¢la ats Ata-
b . X A3 .

INTRODUCTZION

Inappiicable A test that uses features of the language that a cozpiler is
g P
test not required to support or may iegitimately support in a way
otier than tne one expected by the test,

Passed test A test for which a compiler generates the expected result,
Target The computer for which a compiler gererates code.

Test A program that checks a compiler's conformity regarding a
particuilar feature or features to the Ada Standard. Tn the
context of this report, the term I3 wused to designate a
gingle test, which may comprise orne or more files.

Withdrawn test found to be incorrect and not used to check conformity
test to tne Ada language specification. A test may be <ZIncorrect
because 1t has an invalid test objective, fails to meet its
test objective, or contains 1liegal or erronecus use of the

language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and 1llegal Ada programs structured into six test
classes: A, B, C, D, E, and I.. The first letter of a test name Identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are wused %to report thelr results during
execution. Ciass B tests are expected to produce compilation errors.
Ciass L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiied
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Ciass A test checks that
reserved words o¢f another language (other than t..ose already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Ciass A test Is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Cliass B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compilied and the
resuiting compilation iisting is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
iilegal cornstruct that it contains is detected by the compilier.

Class C tests check that legal Ada programs can be correctly compiied and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it s
executed.

Ciass D tests check the compiiation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
tandard for some parameters--for example, the number of Identifiers

1-4

A, T, %
0\ NI o A [o PRI A

N A AN Ay A A A R AR R R R T R L R RS TR SLE
F e |) o

0 -|o'

S Y-
YRS

v

BV

AR

YR
s da
e

Pf‘ -.l

T v s
vt 7
W

T g Sy v
' o
- .

A A

T P LA
v % :

» O g
‘r"'l *y 'n"v'

e
A a e el e Sy
,.n’l’ L

td

I\“ e r

Rt 4
I('v"\ Y %5 %
2 et el

- ~

N e dE S R
S
“Ts e

2k

2",)" W w ¥y W v
] T s

5.
s %

g4 0.8 faf RN Rorhie 4% 0 0 4 s b\ PRI 3 vl tab el 2 AN Pal Yo R Tal 800 Ua B RS Do N RN 0 0ak 0o gttt gt

INTRCDUCTTON

~2s

permitted in a compilation or the rumber of units in a iibrary--a compiler
may refuse o con.ile a Class D test and still be a conforming compiler.
Therefore, if a Class D test falls to compile because the capacity of the
compiler i3 exceeced, the test is classified as inapplicable. If a Class D
test compiies successfully, it is self-checking and produces a PASSED or
FAILED message curing executlorn.

Fach Cliass E test is self-checking and produces a NOT APPLICABLE, PASSFD,
or FAILED message when it is compiied and executed. However, the Ada
Starndard permits an ZImplementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Ciass

test is passed by a compilier if It is compiled successfully and executes
to produce a PASSED message, or If it Is rejected by the compiler for an

aillowable reason.

Class 1. tests check that incomplete or illegal Ada programs involving
multiple, separately compiled wunits are detected and not allowed to
execute. Class L tests are compiled separately and execution Is attempted.
A Class L test passes if 1t is rejected at link time--that is, an attemp:
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two lilbrary units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of 4the executable tests. The package REPORT
provides the mechanism by which executabie tests report PASSED, FAILED, or
NOT APPLICABLE resuits. It aiso provides a set of identity functions used
to defeat some compliier optimizations ailowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executabie tests, These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
cperating correctly, then the vailldation is not attempted.

The text of the tests in the ACVC follow conventions that are intended %o
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
piace features that may not be supported by all implementations in separate
tests, However, some tests corntain values that require the test to be
customized according to implementation-specific values--for example, an
illegal <ile nane, A list of the values used for this validation is
provided in Appendix C.
A compilier must correctly process each of the tests in the suite and
demonstrate conformity to +the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inappiicable ‘o
the implementation. Any ‘test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, 1s not wused 1in testing a compiler. The tests
withdrawn at the time of validation are given In Appendix D.

« ., P R R I P I I L N g N N N I N T T TP S S I LR L R N L L A PUL IV P N G oV I o)
. R S S L RN B R R Ll SOy SRS “w s) <.
Ly PSSP G PR B TS T & SR S R G “_&i&ts:.n‘_\'fn.AA!.:‘.':‘f)\:"f:"': :f:x‘:

W

L [
AT oA,

.
g a

4

X4

o
AN
P

l,

a2,
2}

SNSRI,
)

=

.'.:J"—I'. :v‘; ”
A~

Ay

y vV]
R .L’&
LML Pl
AADREY I3

ey
VL

° %

e

P
RN,

LY

-
«

£
o

o,
&

%
o

Ry
ll ,A' l. 5

" g f z a_s
o ‘..PI.-"..’,,(

gy
A,

NN i@
&
CR IR

0

Al)
2

T T |
P]
PR
L I
Al
I PV

I
‘I 1)
et
]
« .

]
2N e

S,
B Koty Sy

pre

PoaN) "

2.1 CONFIGURATION TESTED

following configuration:

ACVC Version: 1.8

Y Twx

Host Computer:
p Machine:

1 Operating System:

Memory Size:

! Target Computer:

Machine:

Operating System:

Memory Size:

Pa % A
\ \ "oy \ \.r'\(N r .'_'. N _.I'_ .-,*.r\.r\. \.r,\..r\.\ '." LN

CHAPTER 2

CONFIGURATION INFORMATION

The candidate compilation system for this validation was tested under the

Compiler: Tolerant Ada Development System
(part number S-240), Version 2.0

Certificate Expiration Date: 11 May 1988

Tolerant Eternity

X
Release 5.2

12 megabytes

Tolerant Eternity

X
Release 5.2

12 megabytes

NN AN e T N L e et Y
L ._. R PR s L‘". ‘ ‘, -

f

T A L LN
R

by g T
4

‘Il--,n v |\

-
g -~

5

L DL IR
i Q’" K
S

[
%

P
W

.q‘—l.l. 'I‘.I"

»

LA
1t &t
" x

i

l‘l r

E 4 -

“2 5
AR

r
3

s Y v oy
. o 5
¥

RPN
PR nE N

L AT
3 P
'r‘ e

RPN
r'l .' .l’ " \ ‘I

4

ANy

LTS

b Yo T
.

Y Y Y
AR
25

1%

'y

.
LAY .
N

B et ata 2t ata ' ata At 02 00 0" 10 A a A0 B0 252 0% 42 &'s ‘o 3% 1% $'8.0"ad 9B A8 S B0 100 Ba® Ba® $a® $.° 0.0 Ga® Ba’ la’ 8% 0a" oV 208 00 aPR 20 20 24 8" $.8 Aot) @ Sa0 Sai e

W

g
-

h]

g

td

1 .’“

»
CONFIGURATION INFORMATION "ra

.

)

2.2 TIMPLFMENTATION CHARACTFRISTICS %;

One of the purposes of vaiidating compflers is to determire the behavior of »

a compiler in those areas of the Ada Standard that permit impliementations '

{ to differ. Class D and E tests specifically check for such implemertation ok
3 differences, However, tests in other classes also characterize an QJ
impiementation. This compiler is characteri zed by the foillowing 3:’
interpretations of the Ada Standard: fV
. Capacities. fjv

.‘:’
The compiler correctly processes tests containing loop statements F{q
nested to 65 1levels, block statements nested to 65 levels, and S§1

recursive procedures separately compiled as subunits nested to 17 ;
levels. It correctly processes a compilation contalning 723 ol

variables in the same declarative part. (See tests D55A03A..H (8 -~
tests), D56001B, D640OSE..G (3 tests), and D29002K.) ﬁ:f

o
)
%

. Universal integer calculations. »
An implementation I3 aliowed to re ject universal integer 33:

*

'ﬁ'l‘.
[

calcuiations having values that exceed SYSTEM.MAX INT. This
implemertation does not reject such calculations and processes

them correctly. (See tests D4AOO2A, DMAOO2B, DUAOO4A, and 5?}
DYAOCOLB.,)
s
iy
. Predefined types. f
. o
“w (d
This implementation supports the additional predefined types Sa
SHORT INTEGER, SHORT FLCAT, and TINY INTEGER 1in the package >
STANDARD. (See tests B8600G1C and B86001D.) N
. Based iiterals. {Ej
.'{: J
An implementation I1s ailowed to reject a based 1iiteral with a »
vaiue exceeding SYSTEM.MAX INT during compilation, or it may raise B
y NUMERIC FRROR or CONSTRAINT ERROR uring execution. This Gt:
implementation raises NUMERIC_ERROR during execution. (See test f:;
E2UT01A.) fe
o
o
i
|
. Array types. RA%)
et
e
An impiementation Is allowed to raise NUMERIC_FRROR or t%?
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds O
STANDARD.INTEGFR'LAST and/or SYSTEM.MAX INT. :u \
]
-2
.
y 2-2 .'_:}
' -
b
=
N D A T A N D A R TTIT I o SR RA RA SEAAIA,

8% dig°

.

L

Bage et sl et el Vot

Sl Yl Cad b bl e 60 taY0 0000 0 0.0 .0 .2 8 2% 2%0 2% 2'8 2D %% YA 2% AR A% a2 8 AV atA ata’ 202" 01 202" V2 00" b ja” J

CONFIGURATION INrOaMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERRUR when tne array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array subtype is

declared. (See test C52104Y.)

A nuil array with one imension of length greater than
INTEGER'LAST may raise NUMERIC _ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an Implementation may
accept the declaration. However, 1lengths must match in array
silce assignments. Tnis implementation raises NUMERIC FRROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensiornal array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR 1s raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

iscriminated types.

During compilatiorn, an impiementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E381044.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates,

Ir the evaluation of a multi-dimensioral aggregate, all choilces
appear 0 be evaluated before checking against the index type.
(See tests CU3207A and CL3207B.)

In the evaluatlon of an aggregate contalining subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test EU3212B.)

All choices are evaluated before CONSTRAINT FRROR is raised if a

bound in a nonnull range of a nonnull aggrégate does not belong to
an index subtype. (See test E43211B.)

2-3

BTN AT RS SN AR e J TN T SR NI 16 N A I N N R I e N L ol IV V. SR Y W P -
J - L, P
0 e O O A T O N A T R N A S ke 4 sl

oA

W 0%, Vo %0 A

e W Y

5

v,

“AN5QY
AL ®
L, LX

oLy

oy,

v v e e e~

;,, .:n l.',:":"
el
s e

{;\.

l"r,.
S

O

el
R

. v., ,“- S

v .‘- :':{

e,
PP A

P4 I'I‘-

4

Y,

"'\"'"fw ﬂ-"\:‘-
» ‘ . \

Py '-I'_;J‘_: I A A

T Y A o M L AT S 2 ot

CONFIGURATION INFORMATION

jnl 4
Functions.

An implementation may allow the declaration of a parameteriess
function and an enumeration literal having the same profile in the
same Immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

Representation clauses.

The Ada Standard does not require an Iimplementation to support
representation clauses. If a representation clause 1s not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accspts ‘SIZE and 'STORAGE SIZE for tasks,
'STORAGE_SIZE for collections, and 'SMALL clauses. Enumeration
representation clauses, including those that specify noncontiguous
values, appear to be supported. (See tests C55B164, C87B62A,
C87B62B, C87B62C, and BC1002A.)

Pragmas.

The pragma INLINE is supported for procedures and functiorns. (See
tests CA3004E and CA3004F.)

Input/output.

The package SEQUENTIAL_ IO can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT I0 can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests
AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)

An existing text file can be opened in OUT_FILE mode, can be

created in OUT _FILE mode, and can be created in IN_FILE mode.
(See test EE3702C.)

More than one intermal file can be associated with each external
ile for text I/0O for both reading and writing (See tests
CE3117A..E (5 tests).)

More than one intermal file can be associated with each extemal
file for sequential I/0 for both reading and writing (See tests
CE2107A..F (6 tests).)

More than one intermal file can be associated with each external

file for direct I/0 for both reading and writing (See tests
CE2107A..F (6 tests).)

2-4

AL LY

A,
RS ALY

it
3, &

(RSN J
s

:.'l »

-‘-'-(Ft

‘,-

"-"‘l
-
et

g '.}'.‘"-?r‘v YI'.I L]
A S

7%
L e
%

7
b

"yt
e 3

e

LU AL
RV AR

¢

1

N -
n‘liv

‘e

LNy

1~ ¥
] s

NN

SaA

A AT N

DL AR W
T}

.
S
“ot e

CONFIGURATION INFORMATION

-

An external file associated with more than one internal file carn
be deieted. (See test CE27110B.)}

Temporary sequential files are given a name, Temporary cdire

files are given a name. Temporary files given names are deleted
when they are closed. (See tests CE2103A and CE2108C.)

Generics.

Generic subprogram declarations and bodles can be compiled in
separate compilations. (See test CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

2-5

e e S e R AT P TN A AN AN A e

A NN

. @
i

o
N SN

s
5

i

A

¢

I.".‘,. »
’ 7

L Y R
0N

llla(n -_a
fwaﬁ bﬁfﬁf;ﬁébzA

kg
4

e

LA N V..
.‘ﬂ_ ;ﬁﬁ

.
PO

LY
.-’

s
% %

’y

NNy
e
‘I

i Y
<

AR ._-.’ ..
DR

5 Y. N

%
2
!.
Uny,
i
[W e
oy
P
J
4
Vi
S
CHAPTER 3 >
TR
TEST INFORMATION \
RN
3.1 TEST RESULTS ,
ot
Version 1.8 of the ACVC contains 2399 tests. When validation testing of ‘y
Tolerant Ada Development System (part number S-240) was performed, 19 tests :.
had been withdrawn. The remaining 2380 tests were potentlally applicable ‘-ﬁ\
to this validation. The AVF determined that 178 tests were inapplicable to »
this implementation, and that the 2202 applicable tests were passed by the Ale
implementation. o~k
r::l
The AVF concludes that the testing results demonstrate acceptable '\ ;
conformity to the Ada Standard. iC ‘
!J'
)
s
3.2 SUMMARY OF TEST RESULTS BY CLASS ::»
N
My
) »
ROSULT TEST CLA3S TOTAL -
A B C D F L K
Passed 69 865 1192 17 13 46 2202 1.'.-:1..
"
(A
Failed 0 0 0 0 0 0 0
Ol
Inapplicable 0 2 176 0 0 0 178 .::
|‘.\
Withdrawn o 7 22 90 0 o0 19 Yy
W
TOTAL 69 874 1380 17 13 46 2399 ®
o
‘.._'h
=
PO
-\' t
l‘\' g
.;'
»
I.\
l.*
3
~
e
341 o~

v
L4

.,.

;.f,'-' ~f~f ..(N"\- g \4" - _:.\;. ':‘- ." o,

a8 i P el e A At Vel Vel Wb ek i hd R R 0 0 400 R R 8 N R . TN v e R ath ek

TEST INFORMATION

3.3 SUMMARY OF TFEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 0 11 32 14

Passed 102 252 334 244 161 97 138 2061 130 32 218 233 2202

Failed 0 0 0 0 0 0 0 O 0 0 0 0 0

Inappliicable i 73 86 3 0 0 1 1 0 0 0 90 178
Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C3271 144 C4iuoua BT4101B
B33203C BU51164 C87B50A
C340184 C480084a C92005A
C359044A B490064A C940ACA
B37401A B4AO10C CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. thers may
depend on the result of another test that 1s either inapplicablie or
withdrawn, For this validaticn attempt, 178 tests were inapplicabpie for
the reasons Indicated:

. C34007E, B52004D, B55B09C, and C55BO7A use LONG INTEGER which ZIs
not supported by this compiler.

. C34001G and C35702B use LONG FLOAT which is not supported by this
canpiler.

. CB86007F redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT 1s dependent on the package
TEXT I0.

3-2

oo

. oW ™ « e

A A N e et P T I S S N N g A R L AT AP SR S e
L APE IS L o . Ladly 0 s " 3" 0 2 2

.

.

e
5

RZILINS
AL G~

a4
1'I‘k

LRNA N YW
IR

“ -
N DAY
e -

WAL NS 4
%t

Yy

Hr il SR IR A P A
N :bﬁﬁf{.

-
v %

A% %45 %%

Pl CPCAA

..
v
5 s

«
)

f‘;.'_ o e

Rl el AN

o s
I‘

oy

Pg .-5{ AR il ..fsf..f.

EEA Y g

TEST INFORMATION

. C96005B checks implementations for which the smaliest and largest
values in type DURATION are different from the smailest ard
largest values in DURATION's base type. This is not the case for
this implementation.

. The foilowing 170 tests require a floating-point accuracy that
exceeds the maximum of 15 supported by the iImplementation:

Co4113L..Y (14 tests)
C35705L..Y (14 tests)
C35706L..Y (14 tests)
C35707L..Y (14 tests)
C35708L..Y (14 tests)
C35802L..Y (14 tests)
CU4s5241L..Y (14 tests)
C45321L..Y (14 tests)
CU5421L..Y (14 tests)
C45424L..Y (14 tests)
C45521L..2Z (15 tests)
C45621L..Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of coanpller error recovery, then the test is split into a set of
smaller tests that contain the undetected errors., These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or urntil there 1s exactly one arror per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
pecause of its size Is split into a set of smailer subtests that can be
proceassed.

Splits were required for 19 Class B tests.

B2U2044A B37201A B67001B
B24204B B380084A B67001C
B24204C B41202A B67001D
32A0034 BULOCTA B91003B8
BzA0J3B BSU0OOTA BCTO01A
22A003C B6T001A 8971024

B333014

e

‘."-’\vf*:—
e 4

T Y !
Pl
o A

i

ﬁ}
&

2o

RAREF

Ay

.'t'u‘:‘f-

’

-
%

S A
% %

P

¢S
5 Y
Int’ f‘

l.l\
Cs

] .
ol o

[/
5%
A

I'd

LR IR

x,

"1

-
Pl

i ’s

R,

A gnd

o a8 4t B G 0a a2 a%h 2% a8 a8 .6 4.0 0at 0u Sak’ a8 Vabd W, QU R Ry Ty 0 0 &' da Y e a'da‘t

TEST INFORMATION

3.7 ADDITIONAL TFESTING INFORMATION
3.7.1 Prevalidation

Prior to vaiidation, a set of test results for ACVC Versiorn 1.8 produced by
the Tolerant &da Development System was submitte. %o the AVF by the
appilcart for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, ard that the compiler
exhipited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Tolerant Ada Development System using ACVC Version 1.8 was
conducted on-site by a validation team from the AVF. The configuration
consisted of a Tolerant Eternity operating under TX, Release 5.2.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating~point precisions was taken on-site by the
validation team for processing. Tests that make use of
implempentation-specific values were customized before tzing written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The contents of the magnetic tape were 1loaded directly onto the host
computer, After the test files were loaded to disk, the full set of tests
was compiled and linked on the Tolerant Eternity. All executable ‘tests
were run on the Tolerant Eternity. Results were routed via an Etnermet
network to a VAX 11/780 and printed from the VAX.

The compiler was tested using command scripts provided by Tolerant Systems
and reviewed by the validation team.

Tests were complled, linked, and executed (as appropriate) using a single
host and target computer. Test output, compilation listings, and job logs

were captured on magnetic tape and archived at the AVF. The 1liistings
examined on-site by the vaildation team were also archived.

3.7.3 Test Site

The vaiidation team arrived at San Jose CA on 12 APR 87, and departed after
testing was completed on 16 APR 87.

3-4

S] Wy P, g% » o« - o« . oAt I T
s eledess n’.:’..'- J,.'--.:l " _‘J'_‘u‘\- -'f_. \f..f‘l',\ -:.-J'.'f,&- I“-v'-t".-f.' ._/'..(\J'sf%f. f\f\f«-‘"f\f\f.-f,.f\-f‘j‘.'f\f (4 f\’
! B, &, g » B M0 o

7

Y
&

4?#5

-

ﬁ'{-{-{ a :'

1
X

f???ii

i
kY

e
‘(l

HAEHN
P AR

Syt

S
R R

LIS

L A
LS v’.:' 1

Lpd

2,
¥

L wwa, e, 8

Iy

PP
PP

l-l e

SN

.
A
.

PR TR
s ‘l"! *y

- 'f'.ﬁ - '{'_;.‘_

s
".".'- D)
s 'a

.-'4- -

C AN

‘v %

F A
5,

o)
O

(e ™ ™
e

el

.

o4

R U O O O O O N Y Y T T TN D TR T D O \ T

APPENDIX A

DECLLARATION OF CONFORMANCE

Toierant Systems has submitted the following
declaration of conformance concerning the Tolerant Ada
Development System (part number S-240).

o e T e I e NN WY W LR R
Pl #‘)f AN L L

WV 1Y Py, 0. W0 Wy,

. - m e - - - -l - -'\ “e
o L o -(_-f\-\l'._-(

™

EA AN,
hd el

Ay

R
RN

.._’.
3 x

*

X Libd RASAAN

ft.

“ e

A

v'. & &% A 8
i H

-

P I
!A.:...A

<N

R

b

X

T A

:;'

a

«
5

oo

XA

<.

&

RS

Py

»

*y

“r

-

‘.ll .l. ,.l

-

-

Py

L A

DI

*

4

2

L
AN

e e,

'I

’
3

‘-

3

A

.

W LW LW LN WA URTLRY VAT AU taf L LAY AN R/ AKX AARE AN RN RN MRS AR AT KA AR R
DECLARATION OF CONFORMANCE

Tolerant Systems

Compiler Impiementor:
ity: ASD/SCOL, Wright-Pattersen 7B, OH
ion

c
Ada®Validation Facil
Ada Compiler Validat

E IR S

Capapility (ACVC) Version: 1.:

Base Configuration

3ase Compiler Name: Tolerant Ada Development System

(part number S$-240) Versfon: 2.0
Host Architecture ISA: Tolerant Eternity CS&VER #: TX, Release 5.2
Target Architecture ISA: Tolerant Eternity OS&VFR #: TX, Release 5.2

Implementor's Declaration

I, the undersigned, representing Tolerant Systems have Implemented no
deilberate externsions to the Ada Language Standard ANSI/MIL-STD-18754 in
the compller listed in this declaration. I declare that Tolerant Systems
Zs the owner of record of the Ada language compller listed above and, as
such, 1s responsible for maintaining sald compiler in conformance to
ANSI/MII.-STD-18154. All certificates and registrations for Ada language
compiler listed in this decliaration shall be made only in the owner's
corporate name.

(;/‘: (e~ ///1\-‘2' N i Date: /4%%—(’ /): /7.5 7
4

Tolerant Systems
Victor Maxted, V.P. Fngineering

Owner's Declaration

I, the undersigned, representing Tolerant Systems take full responsibility
for impiementation and mainterance of the Ada compiler listed above, and
agree to the public disciosure cf the firal Validatlion Summery Pszport. I
further agree to continue to cctply with the Ada trademark policy, as
defined by the Ada Joint Program Office. I declare that all of the Ada
language compilers listed, and their hcst/target performance are in
compliance with the Ada Language Standard ANSI/MIL-STD-i8'5A. I have
reviewed the Validation Sumary Report for the compiler and concur with the
contents,

. A .

vl ke oA N e s AL
2 A4 z A

Tolerant Systems i '

Victor Maxted, V.P. Engineering

®Ada is a registered trademark of the United States Goverrment
(Ada Joint Program Office),

WAL RS GF ‘\\\"' "’ A A A N N e e T T A O L

- L) -

RO

''''''''

Pl BN
554?1\ o i
B L TAA

l}‘{l ,I‘l

~

e Ja
S
‘O

v

A
’, l"
A, >

L AL

AR AP RRARRL EAIUNTE
e Fﬁa{avﬁ R

“-"),“' RS

. @ ? A Jr _ﬁ"'./\

-

-

r - _ v
"’jl
=7

5

T e

L
1 4é

N5 N e (NI
PR A A :
ol AL

£

RN APl

P
R =

0 ek et et b abte 8 gt et el Bt aa et aR R a8t 86 R0 8.8 2t 8t Ra® Rat 2 6'0 0 20" 0%0 0% 0 0 i a8 pb “gal Ba® Bat $a¥ B2V Bat 2% Ra’ Jat B & ¢ gal ot tat

.
.
&

NS

Pres
K L]

;g.

;%E?;Sﬁ

hY

« ot 0
K]
®
Py
%
N
o2
.
'y
APPENDIX B s
N:
APPENDIX F OF THE Ada STANDARD R
2
>
®
The only allowed implemertation dependencies correspond to implementation- AN
dependent pragmas, to certain machine-dependent conventions as mentioned in :,:
chapter 13 of MIL-STD-18154, and to certain allowed restrictions on :::
representation clauses. The implementation-dependent characteristics of 5
the Tolerant Ada Development System (part number S-240), Version 2.0, are b
described in the following sections which discuss topies in Appendix F of
the Ada Language Reference Manual (ANSI/MIL-STD-18154). i
Implementation-specific portions of the package STANDARD are aiso included el
in this appendix. DRy
L
package STANDARD is TEE‘
L4
vee)
.:__
type INTEGER is range -2_147_483 648 .. 2 147 _UB3_6UT;)
type SHORT INTEGER is range -32_768 .. 32_T67; o
type TINY INTEGER is range -128 .. 127; S
[]
type FLOAT is digits 15 range ;sz
=2#71.133T11111 T 1 11T 111111111 _11#E1023 AR
2T NN T _ T _ i 111111117 _114E1023 N
\:_\
type SHORT FLOAT is digits § range A
—2#1, 71111 1111111111011 _111#E127 »
ce 2#1.11171 13171 11171 11971 1114E12T ey
— — -_— f— .:“.
l.-’
type DURATION is delta 2#1.0#E-1i4 range e
-2#3100000000000000000.0# .. "
2411111111111, 1111111111110 N
®
o s \::.-
2
end STANDARD; S
g
3
%
i
»
e
ROy
B-1 []
N
e
o e A T A AN A A N T S -;._\;.'-“.\;:.:.:_"_ T _:;:‘: o f.;-'.:-;:'_:'_

§ o0 08 an bl fag %t a0 WG R N e A 0 0 a At R A AN R 2 At 15D 8% a¥a 2 lAVat0 s 02t tav AR Gat 0ad #ob gab IO Yy

Attachment II: Appendix F Criteria

1. Implementation-dependent Pragmas

Tolerant ADS provides for sharing of generic bodies
(procedures and packages), when the generic parameters are
restricted to enumeration types, integer types, and floating
types.

PRAGMA SHARE BODY is used to indicate desire to share or not

share an instantiation. The pragma may reference the generic unit
or the instantiated unit. When it references a generic unit, it
sets sharing on/off for all instantiations of that generic, unless
overridden by specific SHARE BODY pragmas for individual
instantiations. When it references an instantiated unit, sharing
is on/off only for that unit. The default is to share all generics
that can be shared, unless the unit uses PRAGMA IN_LINE.

PRAGMA SHARE BODY is only allowed in the following places:
immediately within a declarative part, immediately within a
package specification, or after a library unit in a compilation,
but before any subsequent compilation unit. The form of this
pragma is

pragma SHARE BODY (generic_name, boolean_literal)

Note that a parent instantiation is independent of any individual
instantiation, therefore recompilation of a generic with different
parameters has no effect on other compilations that reference it.
The unit that caused compilation of a parent instantiation need
not be referenced in any way by subsequent units that share the
parent instantiation.

Sharing generics causes a slight executicn time penzlty because
all type attributes must be indireztly referenced (as if an extra
calling arqument were added). However, it substantially reduces
compilation time in most circumstances and reduces program size.

Tolerant has compiled a unit, SHARED IO, in the standard library
that instantiates all Ada generic I/O packages. Thus, any
instantiation of an Ada I/O generic package will share one of the
parent instantiation generic bodies. The PRAGMA SHARE_BODY takes
the name of a generic instantiation or a generic unit as the first
argument and one of the identifiers TRUE or FALSE as the second
argument. This pragma is only allowed immediately at the place of

a declarative item in a declarative part or package specification,
or after a library unit in a compilation, but before any subsequent
compilation unit.

When the first argument is a generic unit, the pragma applies to
all instantiations of that generic. When the first argument is the
name of a generic instantiation the pragma applies only to the
specified instantiation, or overloaded instantiation.

If the second argument is TRUE, the compiler will try to share code

B-2

AR
b S-A- 4 A

x
'y
b

® F»’ :.'_.‘-

"y ¥ vV 8 W
Pt aTa e
ALl by &
S ELS L

"
/
oA,

x

"y"v v
o ¥

3y

1
’ LNy
Y ."i.l'l"l"
(SRR RA RN

Fal o SR L R4
P
&

®.5

4.5
»

I}}xf{ﬁw
s o w_-_ 7
AR

>‘_\'\._-.,. N
._f\;l,") ‘y

2t et
ol
<@
[t 37

"~ R
s

Nt e
R “’.'. ‘: R A

v Pl 7
PR oty T, Yy

o a
LPL LI

2 2y

=
]

-

‘i” ." ? ’
YN,

o =

y

7

!
2
€

generated for a generic instantiation with code generated for other
instantiations of the same generic. When the second argument is
FALSE, each instantiation will get a unique copy cf the generated
code., The extent to which code is shared between instantiations
depends on this pragma and the kind of generic formal parameters
declared for the generic unit.

PRAGMA EXTERNAL NAME allows variables defined in another language

to be referenced directly in Ada. PRAGMA EXTERNAL NAME will replace
all occurrences of variable name with an external reference to
link_name in the object file using the format shown below.

pragma EXTERNAL_NAME (variable name, link_name);

This pragma is allowed at the place of a declarative item in a
package specification and must apply to an object declared earlier

in the same package specification. The object must be declared as

a scalar or an access type. The object cannot be any of the following

a loop variable,

a constant,

an initialized variable,
an array, or

a record.

The link_name must be constructed as expected by the linker 1d(l).
For example, if linking with a C program on UNIX, the C variable
name preceded by an underscore must be used in the same case (upper
and lower) as in the C program source file, i.e., to link to the C
global variable errno.

package PACKAGE NAME is
ERRNO: INTEGER;
pragma EXTERNAL_NAME(ERRNO,"_errno");

end PACKAGE_NAME;

2. Implementation of Predefined Pragmas

Recognized, but have no effect: CONTROLLED, OPTIMIZE, SHARED,
MEMORY_SIZE, STORAGE_UNIT, SYSTEM NAME,

Implemented as described by Appendix B of the Ada Reference
Manual: ELABORATE, INLINE, LIST, PAGE, PRIORITY.

PRAGMA INTERFACE supports calls to 'C' and FORTRAN. Type of
parameters and result must be scalar, access or the predefined
type ADDRESS in SYSTEM. All parameters must have mode IN.

PRAGMA PACK will cause the compiler to choose a non-aligned
representation for composite types. Bit level packing is not
supported.

PRACHMA SUPPRESS is implemented as described in the Ada
Reference Manual, except that DIVISION_CHEECK cannot be
suppressed.

B-3

,_: NG ¢~w T A, Ay ':_'_.r‘z\'r,:-' e '.r ACA LN A A ;-'. z .r; _: N N A FAEARIE N L
v = “'ﬁL{-Jﬂ.A;_J‘_J..J‘_ N Y S L P DRI .r‘.r\ AV ‘_n\.a\ \

TR ARY Thtgetulegur =
N SRR AR

A

. I. ;V~l’~

.
N
)

L S

A

Tt 5-{.:}:'\' \"_ :.'.\. W :" o
4 a0 A,

n_' yt
R "

> x s
P

&

8 A

D "y
o

-

tel s
a’e”

v x
»

[e S Belie s
RV P
:, s'.\ A

." 5 10
L

R P R N e W L e T S T e T T AT T NS LA S T M N
%) . BRI VWA *.._: AT RS S TN \.}-.._...__‘.-v,\

3. Implementation-dependent Attributes

There are no implementation-dependent attributes in Tolerant ADS.

4., Restrictions on Representation Clauses

4.1. PRAGMA PACK

Bit packing is not supported. Objects and components are packed
to the nearest whole STORAGE_UNIT.

4.2. Size Specification

The size specification T'SMALL is supported only to the

extent that the base representation is not changed.

T'SIZE and T'STORAGE_SIZE are supported.

4.3. Record Representation Clauses

Component clauses must be aligned on STORAGE UNIT boundaries.

4.4. Address Clauses

Address clauses are not supported.

4.5 Interrupts

Interrupts are supported. They are attached to the UNIX
signal mechanism.

4.6 Change of Representation

Change of representation is not supported for record types.

4.7 Representation Attributes

The ADDRESS attribute is not suppcrted for the following entities:
static constants packages tasks labels entries.

4.8. Machine Code Insertions

Machine code insertions are supported.

5. Conventions for Implementation-generated Names

There are no implementation generated names.

B-4

RIS, Sl S R . S S

AN
G A A |. f l’ U

‘EESEEEEQO‘

v
»

L L
{. Y

TANSS
Ay

e53,

o

.l

ERLE I 4
l.' "I

AR

y‘
s

Fa kR
e

[I SN
*

=}
L]
1

e
XX

“. A
SN

I N

R

! X
AR

‘s "y XY
A

272

N
+
*l.,l..\,

d

T
’,
.

4 & & 0
.". et

s S ""-0"

le s

e A

T ST TR R T A e S A e A e et s e R N
e id .

J'%J' ,ef)

6. Interpretation of Expressions in Address Clauses

Address clauses are not supported.

7. Restrictions on Unchecked Conversions

The predefined generic function UNCHECKED_CONVERSION cannot be
instantiated with a target type that is an unconstrained array
type or an unconstrained record type with discriminants.

8. Implementation Characteristics of I/O Packages

Instantiations of DIRECT_IO use the value MAX REC _SIZE as the
record size (expressed in STORAGE _UNITs) when “the size of
ELEMENT TYPE exceeds that value. For example, for unconstrained
arrays such as string where ELEMENT_TYPE'SIZE is very large,
MAX_REC_SIZE is used instead. MAX RECORD SIZE is defined in
SYSTEM and can be changed by a program before 1nstant1at1ng
DIRECT_ IO to provide an upper limit on the record size.

In any case, the maximum size supported is 1024 * 1024 *
STORAGE_UNIT bits. DIRECT_IO will raise USE_ERROR if

MAX REC_| TSIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL_IO use the value MAX_REC_SIZE as
the record size (expressed in STORAGE _UNITs) when the size of
ELEMENT TYPE exceeds that value. For example, for unconstrained
arrays such as string where ELEMENT_TYPE'SIZE is very large,

MAX REC_SIZE is used instead. MAX RECORD SIZE is defined in
SYSTEM and can be changed by a program before 1nstant1at1ng
INTEGER_IO to provide an upper limit on the record size.
SEQUENTIAL_IO imposes no limit on MAX REC_SIZE.

The FORM parameter to TEXT_IO CREATE and OPEN has been
implemented to provide access to additional file
characteristi~<s supported by the TX operating system.

9. Implementation Limits

The following limits are actually enforced by the implementation.
It is not intencded to implv that resources up to or even near
these limits are available to every program.

2.1 Line Length

The implementation supports a maximum line length of 500 characters
including the end of line character.

9.2 Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x
STORAGE_UNITS. The maximum size of a statically sized record
type is 4,000,000 x STORAGE UNITS. A record type or array type
declaration that exceeds these limits will generate a warning
message.

B-5

T R A s e BT SR R NN NN

~
Eal s
y Sl YR

A ARAR W
Al X

h ol ol ol o o 8Y]
LR AR
< l‘ Cs

PO

P SR
s,
w's

LSS

By
A e

s
La

e e

45N AW,
. &

-‘. .l' .l—‘.'
A

L T
P,
""':":"l/*-/'

”

SREH AN W
_lx"l"nfl:‘\ [$

- :;:,n.
> »* A

x * s, -,
Phd 2SN
PO

=

Ri. Xs

Y.
el
[}

LA S T W
IS MR
."-' |. .

...
et

4

2

AN
Xy

e St A
o,

¥
&

g8 a0 000,07 00 0 (S A% 400 %0 00 A Bttty gt el oot Saborad Aaha-gt tal tal sar Vet Vag 1g S tag tag ¢ YR YITY) % XX

g ’S{{"r'

9.3 Default Stack Size for Tasks

|
| kY
l\ .
| In the absence of an explicit STORAGE_SIZE length specification Qﬁ'
' everyv task except the main program is allocated a f£ixed size N,
stack of 10,240 STORAGE_UNITS. This is the value returned by oy
T'STORAGE_SIZE for a task type T. !?
' ol
i 9.4 Default Collection Size ;E
h.
?
In the absence of an explicit STORAGE_SIZE length attribute the 5

rd
o

default collection size for an access type is 100,000
STORAGE_UNITS. This is the value returned by T'STORAGE_SIZE for
an access type T.

oy

v T w v
’

o
9.5 Limit on Declared Objects ;E
v
There is an absolute limit of 6,000,000 x STORAGE_UNITS for objects o
declared statically within a compilation unit. If this value is o
4 exceeded the compiler will terminate the compilation of the unit .
4ith a FATAL error message. p:
g
) s
)
e
e
?
O

o
RIS .l‘.l'{A‘

- T
L A LN W YT
J p"a‘ '\."'.’x" .-‘# Y4
R

S

~ e e “u

w4

“w W e T e e e e Te e e G e e N
AN N i A A N AL AT N N

N LT T
P \-I'_‘J'\J' N

rnwuv\-u\wu\'xnr\mmmﬂ'lﬂlﬁ

Attachment IV: Package System
SYSTEM 434
gzckage e
J 3 rarmy . ‘..\..
type NAME is (eternity_tx }; EEE
SYSTEM_NAME : constant NAME := eternity tx; %iﬁ
5
STORAGE_UNIT : constant := 8; R
MEMORY SIZE : constant := 16 777 _216; 'Y
- _:1;1
-~ System-Dependent Named Numbers :?Q
MIN_INT : constant := -2_147_483_647 - 1; 2
MAX_INT : constant := 2_T47_483_647; R
MAX DIGITS : constant := 15; o
MAX_MANTISSA : constant := 31; 5y
FINE_DELTA : constant := 2.0**(-14); ot
TICK : constant := 0.01; AR
. -- Other System-dependent Declarations }?\
Sy
subtype PRIORITY is INTEGER range 0 .. 99; o
MAX REC_SIZE : integer := 64*1024; &
type ADDRESS is private; 3f
2
NO_ADDR: constant ADDRESS; N
S
function PHYSICAL ADDRESS(I: INTEGER) return ADDRESS; ;\‘
function ADDR_GT(A, B: ADDRESS) return BOOLEAN; e
function ADDR_LT(A, B: ADDRESS) return BOOLEAN; -
function ADDR_GE(A, B: ADDRESS) return BOOLEAN; T
function ADDR_LE(A, B: ADDFESS) return BOOLEAN; o~
function ADDR_DIFF(A, B: ADDRESS) return INTEGER; ;:a
function INCR_ADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS; ;'
function DECR_ADDR(A: ADDRESS; DECR: INTEGER) retu:n ADDRESS; A
function ">"(A, B: ADDRESS) return BOOLEAN renames ADDR _GT: o
function "<"(A, B: ADDRESS) return BOOLZAN renames ADDR_LT; I
function ">="(A, B: ADDRESE) return BOOLEAN rerames ADDR_GE; S
function "<="(A, B: ADDRESS) return BOOLEAN renames ADDR_LE; o
function "-"(A, B: ADDRESS) return INTEGER renames ADDR_DIFF; =3
function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS Ay
renames INCR_ADDR; ~
function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS N
renames DECR_ADDR:; o
pragma inline(PHYSICAL_ADDRESS); SL;
pragma inline(ADDR_GT); s
pragma inline(ADDR_LT); o
pragma inline(ADDR_GE); RN
pragma inline(ADDR_LE); o
pragma inline(ADDR_DIFF); o
pragma inline(INCR_ADDR); NG
pragma inline(DECR_ADDR); cﬁﬁ
NN
B-7 A
e
ol
Y
@
PRTTER e e, A e e e e :'-:::.
ATSEOIAAN \‘.L.\’-:}:- -I'__- et L AR _, .-\: .-; ‘.. :: :A._; : ::* Rt NSRS RARARRE \..\..\:.\"

Padiatade gty tlo gt gl g trgt

private

type ADDRESS is new INTEGER;

no_addr: constant address := address(0);

end SYSTEM;

« s n -
WL

[
.."o ""' Pl

LA AR i’
l&';.:n ::-' :

e . e W
LR N
LY . L]
(U L)
1 ¢ [

¥

«
»

‘r-
N

7"'

L I g
Y

s
A]

S
:

o N S
AN

[
P

il J
111

W
LU v 4
3 Pala e

B-8

- o v
[
e,

-
o
%,

.

-'¢‘l{
o8

s
‘s

O . B T RS DL P L A IS AU
ks L, A f..I f_'f.‘l.'fv ..4'!.’-_ -."-./,-. -,

LB SRS ST .o
T I N TSR AP

g gt

.
“

.

Lot gob gae gab g0 Ry XY & ‘e ita Alat 2ha'd o 'a e . -y, R TR XY TR Y SO O YOY YOaa' LR SR
.:,‘f.'-
D’
o
e
o
-._‘- d
1‘..:'_-
A
\-:'_-
e,
]
el
A
Sel
Selw
IA..\
o
APPENDIX C . ?
LN
TEST PaRAMETERS o
o
Certain tests in the ACVC make use of implementation-dependent values, such \!_,.:
as the maximum length of an input line and invalid file names. A test that :';:.\\-
makes use of sucih values 1s identified by the extension .TST in <its file .";,‘;
name. fActuail values to be substituted are represented by names that begin :-.:«.
with a dollar sign. A value must be substituted for each of these names '_;_.r':_
before ¢the test Is run. The values used for this validation are given ‘."
beliow. S
e
R
Wame and Meaning Value ;:;-_::
- , \;:-:
$BIG_IDI (1..498 =>'A',U499 =>"'1") J.-
Identifier the size of ‘the K
maximum input iine length wit A
varying last character. ﬁ,: Y
N
0
$BiG_ID2 (1..498 =>'A',U99 =>'2") "v
Iidentifier the size of the Y
+ e 4 h h od S oia .
zaximun input line length with T
varying last character, hANA
AT
$BIG_ID3 (1..249 =>'A',250 =>'3',251..4G9 =>'A") A
Identifier the size of the e
maximum input iine 1length with :'
varyirg middle character. XL
o
-_— - “ '.-:-'
$BIG IDY4 (1..249 =>'A",250 =>'4"',2571,.499 =>'a"} ;u")
Zdertifier the size of the \{','. V.
maximum Input line length with k\
varying aiddlie character. '. '
- -,
$BIG_INT LIT (1..496 =>'0",497..499 =>"298") Sl
An integer 1iteral of value 298 e
with enough leading =zeroes so S
that 1t 4s the size of the e
maximun l1%ne length. ."“
K
AN
..’\\'_
:f\‘:
v
-"\"
Cc-1 -
R
S
R e, e e e T - v - F o - L. - P T T Cow L e T~
I A AN AL ."I J',\'."'J' A R N R AP D A ‘:" ‘:'._.:' s :"-‘\J'.'.r \;':-":'.'c“.u‘;“:\":\'.

ware and Mearning Value

3573 REAL LTIT (1. 8G8% =>'0',434,,459 =>"p3.0E ™)
A real literal that can be
either of floating- or fixed-

point type, nas value 6350.0, and
nas erough 1eading zeroes to Dde
the siz of tne maximum line
length,
$pl.alKS

A sequence of blanus ‘twenty
characters fewer than the size
of the maximum line length.

$COUNT LAST

A universal integer literal

whose value is TEXT_ I0.COUNT'LAST.

$EXTENDED _ASCIT CHARS
A string 1literal containing all
the ASCIT characters wit
printabie graphics that are not
in the basic 55 Ada character
set,

SFIELD LAST

A “universal integer literal

whnose value is TEXT_IO.FIELD'LAST.

$FILE NAME_WITH BAD CHARS
An illegal extermal file name
that either contains invalid
characters, or is too long if rno
invelid characters exist.

SFTLE_NAME_WITH_WiIl.D_CARD_CHAR
An externai file name that
elther contains a wild card
character, or i1s too long if no
wild card character exists.

SGREATER_THAN_DURATION
A unlversal real wvaiue that liles
between DURATION'BASE'LAST arnd
OURATION'LAST € any, otherwise
any value in the range of
DURATION.

el
-,

$SREATER_THAN_DURATION BASE LAST
The universal real value that is

greater than DURATION'BASE'LAST,
i€ such a value exists.

(1..479 =>' ")

2TUTH8364T

"abedefght jklmnopgrstuvwxyz!$42e¢[\] " {}~"

2187483647

/illegal/file_name/2{]$%2102C.DAT

/iliegal/file nawe/CE2702C*.DAT

100_000.90

10_000_000.0

P

>y
LA LY

»

A N
4 SR
'.I'y :s“sislﬂ“ N

. A

% s s v
e A R g
PN A T N T M
| LA

L X

v % w1
<

g Al
AN

4

RN B

2.2,00.4

s s s 4

"ﬁ-’\.“n
ry "

RN X
NS NNY ‘v_
Y

A, L
.
v e

Pt S

o
L < -

.
Ay
e

COLOTI® PP A@
AR f¢$“?ﬁ..

A7
s

Name ani Mearing

$TLLEGAL EXTF
An ille e name.
$TLILEGAL_FXTFRNAL_FILF NA .2
le5a¢ external file name

is different from

a
LLEGAL_EXTERNAL FILE_NAME1.

$INTFGER FIRST

The universal integer literal

expression whose vaiue is
INTEGER'FIRST.

$INTEGER_LAST
The universal integer literal
expression whose value is
INTEGER'LAST.

$1.FSS_THAN_ DURATION
A universal real value that 1lies
between DURATION'BASE'FIRST and
DURATION'FIR3T if any, otherwise
any value in the range of
DURATION.

$I.ESS_THAN_DURATION_BASE _FIRST
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

MAX DIGITS
The universal irteger literal
whcse vzlue is the maximum
digits supported for
flcating-point types.
$MAX IN_LEN
The universal integer 1literal
wnose value is the maximum
input iine length permitted by

tne implementation.

SMAX_INT
The wuniversal integer 1literal
whose value Is SYSTEM.MAX INT.

NN A NN 3 A NN AT AN

- \ N e e e

Value

/no/such/directory/ILLFGAL _FATFENAL

ey g
L T Tt

o~y
N

/no/such/directory/ILLEGAl _FXTERNAL_FILFE NAMF2
-2 _147_463_ou48

2_147_483_64T

~100_000.0

-10_000_000.0

15

499

2_147_U483 647

.

. |
9 .
a »
« >,

‘;"\ A

...:.

27

.;:'..
{ '5

K
[d

RAARAARRY |
‘. 5'!
kﬁi?.ﬁ?!;.

.
TNl
0

Taw
B
.

, '. 1 . g .'.l."'-’J
JSIRK

VA A AV A
. Ve
AR AR TN

/
Sy %y

.

/

A IRy F PN
A,.' n’ ‘I l" ., l.
[AL A

RS

Lo

R
(VLM ¥
.l.l
€ 0

Y)IIIJ [} ‘c

%N
’

h
v <

0 0°0.8% 0% 4%)t A gt At A ‘el ‘sl *at -I [-- » 7) YWY . 14 a0 la 2f8iata’ . :La" AR ata aftat 08" * e @ 0d At ALY 4. At a0y Ast dod 4Lt 80 g .
g
p . I
e L
TEST FPARAMETERS s
are ani YMeaning Value
SNAME TINY TNTEGER »
A nate of a predefined numeric S
type other than FLOAT, INTFGER, Nt
SHORT_FLOAT, SHCRT INTEGER, e
LONG FLOAT, or LONG INTEGER :\:
ol iy N

i® one exists, otherwise any
urndefined rame.

e

$NEG_BASFD_INT B#TTTTTITTTITI6# -
A based integer literal whose e
{ highest order nonzero bit .:}
falls in the sign bit i
position of the representation »
for SYSTEM.MAX INT. ;:
f\{
‘ $NON_ASCII CBAR TYPE (NON_NULL) ff4
An enumerated type definition o

for a character type whose

literals are the identifier
ﬁ NON NULL and ail non-ASCII
{ charasters with printable
graphics.

.".-:“:‘

RO

e

-
.

e E,
A

%

PN

P———

h)

W L
[

“ -
4t 45

Lhow e
I AR
e

'.
°r

L
t I

v s e e
e
] n

«

2l B 4
. s
',’l'l",l‘
PO

14 .| -l .l e
. .
.

’
LY

.,
e
»

4>
/

AT,
LS e Y]
A

C-4

A 4

~

¢

s
»

AP

W e T LW e W e el T R Y e T T o
DA S A SR N S R AT AL, AN

TRER N, AN RS R oy Ot tal "2l %2 T2t 400 LRI AR A AN (Va8 Sag Sal 0.0 920 0.0 8-

” [

y APPENDIX D

p

‘ WITHDRAWN TESTS
Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AT-ddddd" is to an Ada Commentary.

. C32174A: An urnterminated string literal occurs at line 62.

. E33203C: The reserved word "I3" is misspelled at line 45.

. C34018A: The call of function G at line 114 is ambiguous in the
presence of Zmplicit conversions,

. C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC ERROR instead of CONSTRAINT_FRROR as expected in
the test.

b

. B3T40TA: The object declarations at lines 126 through 135 follow
sJbprog:ram bodlies declared in the same declarative part.

. CUi4QuA: The values of 'LAST and 'LENGTH are incorrect in the i{°f
statements from line 74 to the end of the test.

. BY45116A: ARRPRIBL!' and ARRPRIBL2 are initiaiized with a value of

X the wrong type--PRIBCOL_TYPE instead of ARRPRIBOOL_TYPE--at lire
\ 41,

. (CLBOOEA: The asaumption that evaiuation of default initial values
ceccurs when an exception is raised by an allocator is ircorrect
according to AI-00397.

. B4300cA: Object declarations at lires 41 and 50 are ‘erminated
incorrectly with colons, and end case; is missing from line 42.

. BHAO10C: The object declaration in liine 18 follows a subprogram
body of the same declarative part.

D-1
R T T O R L R R S YR o 1 TRl 01 G LR PV U ORU St

-

R

P~

'.r

Y-
s %

.
L]

LA
') &

RN
L4
'h"hﬁ-

4

[{

2

e

‘r{‘.'x'h‘x

[

=

Lo

FAASAMRS

r
PR NN,

Rl
"

NS
.

v %

P
t'& KA

O

-

X
+

<

RO

L%
.

RTUPIRL RN AR 4
LN

W

-t
. e

et Te
£ 8 v 45 4

P

ST

IR S
CRE RN
EPLAAL

o
.

SN
-_' o

l"‘.
PR
[1)

.

\%J-
v .
KRR

1“' .".n

A S LS

«® o

RN

I U

'y

.

o

at tat et al et tal et el ol a8 el ats i gl Yy ata gt "t 20, B' 81u 4% t'e 82 8% A% 4%a 8% 0%a 0" e §%a 4%2 4"

w_THDHAWN TECTS

B7+'01B: The begin 2t 1ilre 9 causes a declarative part o e
trezted as a sequence of statements.

~Qm oo

7250A: The call of "/=" at line 31 requires a wuse clause for
pac<age A.

C92205A: The "/=" for type PACK.BIG INT at liire 40 is not visiolie
without a use clause for tne package PACK.

CQuQACA: Thne assumption that allocated task TT! will run prior %o
tne main program, and thus assign SPYNUMB the value checked for by

tne main program, I8 €rroneoQus.

CA3005A..D (4 tests): No vaiid elaboration order exists for these
tests,

BC3204C: The body of BC3204C0 is missing.

R T RTR T A _’:._.‘-_._.‘-_._.'-'.\ _,\;_\.

NSNS

o t'a0'e e ¢

Y

o
s

?ﬂf:
%Y

LY

f
x‘}’ L

- ('). ':’
‘:1?._“:{ SRR

","{. -
-.-b-

5N G %Ny

X
3
s

.

“F . S-‘:! -'.,\‘.*-
P WAL S

FaAPils

-
R

.

e
P

“atrs 0 el
.

Ll P P

L
'L
LS

I'.I.‘-
R

vy
P

LRGNy
:?ﬁiﬂq{¢¥d
2t ',.,‘""

L/

PR
Lo

AN)

-

. etysww | f... .-4 .n-,-uv.- N .r % .-, %, .
- @ mv--\..\...y... ..\.......w L Iy N
AR AR l- -n- \- .-n -...... . f. * R‘-ﬁ\ﬁr\aﬂ\..\.- -(- (g

BN Y] Wa AN

o X -- -f\f\.-\.-\/\f \. w\ AR rl- ',

g h "% \-\- 4 1»...-»;:.#-. - C Gy o ..—--.. [4 = n o T Ttk
" " . o ¢ . .\-. ...\.-\..\. -\.- .#ma. [] ﬂn-\ p-. u.- fa _-\.f“ “ . » -.-) ..,---. .-- q- ._'N.“ .\-- .\--\‘. -.” \.- P] .fv-nq.\-.\-\--b.-) A'A
g » ‘ll! .l l.- II I. r \f .k r\l --. v‘t l.- -\l ‘ - ’ - ﬁ rd -\ lt‘ I\ .\ ll I\ N ? L4 I‘- -.- I\ \.\ F..l.!l I.t -.l \l l"

A L™ U

A OO AT URP A

Ny

.

"eoa-h

LR

U

¢ o%¢

"*‘ \F] L IPAT SIY N

e !
I.‘.:.' .\‘.’" 0.

et b

o

o'
Y

.l emabggn s % LG Re e SBOSRRMY 2 ARPING S

Ly 3 v

